Сайт учителя

Тинькова Е.Н.

2.1.3 Свойства алгоритма

Не любая инструкция, последовательность предписаний или план действий может считаться алгоритмом. Каждый алгоритм обязательно обладает следующими свойствами: дискретность, понятность, определённость, результативность и массовость.

Свойство дискретности означает, что путь решения задачи разделён на отдельные шаги (действия). Каждому действию соответствует предписание (команда). Только выполнив одну команду, исполнитель может приступить к выполнению следующей команды.

Свойство понятности означает, что алгоритм состоит только из команд, входящих в систему команд исполнителя, т. е. из таких команд, которые исполнитель может воспринять и по которым может выполнить требуемые действия.

Свойство определённости означает, что в алгоритме нет команд, смысл которых может быть истолкован исполнителем неоднозначно; недопустимы ситуации, когда после выполнения очередной команды исполнителю неясно, какую команду выполнять следующей. Благодаря этому результат алгоритма однозначно определяется набором исходных данных: если алгоритм несколько раз применяется к одному и тому же набору исходных данных, то на выходе всегда получается один и тот же результат.

Свойство результативности означает, что алгоритм должен обес­печивать получение результата после конечного, возможно, очень большого, числа шагов. При этом результатом считается не только обусловленный постановкой задачи ответ, но и вывод о невозмож­ности продолжения по какой-либо причине решения данной задачи.

Свойство массовости означает, что алгоритм должен обеспечивать возможность его применения для решения любой задачи из некоторого класса задач. Например, алгоритм нахождения корней квадратного уравнения должен быть применим к любому квадратному уравнению, алгоритм перехода улицы должен быть применим в любом месте улицы, алгоритм приготовления лекарства должен быть применим для приготовления любого его количества и т. д.

Пример 8. Рассмотрим один из методов нахождения всех простых чисел, не превышающих некоторое натуральное число п. Этот метод называется «решето Эратосфена» по имени предложившего его древнегреческого учёного Эратосфена (III в. до н. э.).

Для нахождения всех простых чисел, не больших заданного числа п, следуя методу Эратосфена, нужно выполнить следующие шаги:

  1. выписать подряд все натуральные числа от 2 до п (2, 3, 4, ..., n);

  2. заключить в рамку 2 — первое простое число;

  3. вычеркнуть из списка все числа, делящиеся на последнее найденное простое число;

  4. найти первое неотмеченное число (отмеченные числа — зачёркнутые числа или числа, заключённые в рамку) и заключить его в рамку — это будет очередное простое число;

  5. повторять шаги 3 и 4 до тех пор, пока не останется неотмеченных чисел.

    Более наглядное представление о методе нахождения простых чисел вы сможете получить с помощью размещённой в Единой коллекции цифровых образовательных ресурсов анимации «Решето Эратосфена» (180279).

    Рассмотренная последовательность действий является алгоритмом, так как она удовлетворяет свойствам:

  • дискретности — процесс нахождения простых чисел разбит на шаги;

  • понятности — каждая команда понятна ученику 8 класса, выполняющему этот алгоритм;

  • определённости — каждая команда трактуется и выполняется исполнителем однозначно; имеются указания об очерёдности выполнения команд;

  • результативности — через некоторое число шагов достигается результат;

    • массовости — последовательность действий применима для любого натурального п.

    Рассмотренные свойства алгоритма позволяют дать более точное определение алгоритма.

Алгоритм — это предназначенное для конкретного исполнителя описа­ние последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами дискретности, понятности, определённости, результативности и массовости.

Упражнение 1

 

Вернуться в параграф

Block title

Вход на сайт

Поиск

Календарь

«  Январь 2025  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Статистика


Онлайн всего: 3
Гостей: 3
Пользователей: 0

Архив записей